skip to main content


Search for: All records

Creators/Authors contains: "Ren, Shaolei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Online optimization with multiple budget constraints is challenging since the online decisions over a short time horizon are coupled together by strict inventory constraints. The existing manually-designed algorithms cannot achieve satisfactory average performance for this setting because they often need a large number of time steps for convergence and/or may violate the inventory constraints. In this paper, we propose a new machine learning (ML) assisted unrolling approach, called LAAU (Learning-Assisted Algorithm Unrolling), which unrolls the agent’s online decision pipeline and leverages an ML model for updating the Lagrangian multiplier online. For efficient training via backpropagation, we derive gradients of the decision pipeline over time. We also provide the average cost bounds for two cases when training data is available offline and collected online, respectively. Finally, we present numerical results to highlight that LAAU can outperform the existing baselines. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  2. Free, publicly-accessible full text available May 17, 2024
  3. Free, publicly-accessible full text available May 20, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. By integrating domain knowledge with labeled samples, informed machine learning has been emerging to improve the learning performance for a wide range of applications. Nonetheless, rigorous understanding of the role of injected domain knowledge has been under-explored. In this paper, we consider an informed deep neural network (DNN) with over-parameterization and domain knowledge integrated into its training objective function, and study how and why domain knowledge benefits the performance. Concretely, we quantitatively demonstrate the two benefits of domain knowledge in informed learning --- regularizing the label-based supervision and supplementing the labeled samples --- and reveal the trade-off between label and knowledge imperfectness in the bound of the population risk. Based on the theoretical analysis, we propose a generalized informed training objective to better exploit the benefits of knowledge and balance the label and knowledge imperfectness, which is validated by the population risk bound. Our analysis on sampling complexity sheds lights on how to choose the hyper-parameters for informed learning, and further justifies the advantages of knowledge informed learning. 
    more » « less
  6. We study online convex optimization with switching costs, a practically important but also extremely challenging problem due to the lack of complete offline information. By tapping into the power of machine learning (ML) based optimizers, ML-augmented online algorithms (also referred to as expert calibration in this paper) have been emerging as state of the art, with provable worst-case performance guarantees. Nonetheless, by using the standard practice of training an ML model as a standalone optimizer and plugging it into an ML-augmented algorithm, the average cost performance can be highly unsatisfactory. In order to address the "how to learn" challenge, we propose EC-L2O (expert-calibrated learning to optimize), which trains an ML-based optimizer by explicitly taking into account the downstream expert calibrator. To accomplish this, we propose a new differentiable expert calibrator that generalizes regularized online balanced descent and offers a provably better competitive ratio than pure ML predictions when the prediction error is large. For training, our loss function is a weighted sum of two different losses --- one minimizing the average ML prediction error for better robustness, and the other one minimizing the post-calibration average cost. We also provide theoretical analysis for EC-L2O, highlighting that expert calibration can be even beneficial for the average cost performance and that the high-percentile tail ratio of the cost achieved by EC-L2O to that of the offline optimal oracle (i.e., tail cost ratio) can be bounded. Finally, we test EC-L2O by running simulations for sustainable datacenter demand response. Our results demonstrate that EC-L2O can empirically achieve a lower average cost as well as a lower competitive ratio than the existing baseline algorithms. 
    more » « less